

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 6475-6476

Tetrahedron Letters

An efficient synthesis of (+)-prelactone \mathbf{B}^{\bigstar}

J. S. Yadav,* K. Bhaskar Reddy and G. Sabitha

Organic Chemical Sciences, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 6 May 2004; revised 16 June 2004; accepted 25 June 2004 Available online 19 July 2004

Abstract—An enantioselective synthesis of (+)-prelactone B 1 has been achieved on a multigram scale starting from a known bicyclic precursor 2. The key feature of the strategy is the generation of 3-stereogenic centres from a single bicyclic precursor, which has been utilized as a chiral building block for the synthesis of various natural products. © 2004 Elsevier Ltd. All rights reserved.

The prelactones are highly functionalized chiral δ -lactones isolated from various polyketide macrolide producing microorganisms.¹ They represent essential structural motifs in a large number of bioactive natural products, such as mevinolin and compactin, inhibitors of cholesterol biosynthesis;² phomalactone³ and asperlin,⁴ antibiotics; massoialactone⁵ and tetrahydro-6-(1-hydroxyundecyl)-2H-pyran-2-one;⁶ attractant or defence substances for animals and insects. (+)-Prelactone B 1 was isolated from bafilomycin producing microorganisms, Streptomyces griseus (strain Tü 2599 ana 18) by Zeeck and Bindseil in 1993.⁷ It is believed to be the product of polyketide synthase (PKS), and is used as a standard for investigations concerning the mechanism of PKS. To the best of our knowledge, to date, only three asymmetric syntheses⁸ of prelactone B and one leading to the racemate⁹ have been reported. In connection with our ongoing research into the total synthesis of the macrolide antibiotic, bafilomycin A_{1} ,¹⁰ which is a specific vacular-type H⁺-ATPase inhibitor, possessing interesting activities, such as antibacterial, antifungal and immunosuppressive activities, we needed a new method for the preparation of a large amount of (+)-prelactone B. We report herein a concise method for the multigram scale preparation of (+)-prelactone B 1 by a convergent route.

Our synthetic approach towards the target molecule was based on the utilization of the bicyclic precursor 2 and the key feature of our strategy is that all the three stereogenic centres of the molecule at C-4, C-5 and C-6 are generated from this precursor. This bicyclic precursor was earlier used by our group towards the synthesis of rifamycin S¹¹ and discodermolide.¹²

Asymmetric hydroboration of the olefin 2 using (–)-diisopinocampheylborane gave 3 in high optical purity. The alcohol 3 was converted to the lactone 4 by a two step sequence, PCC oxidation followed by Baeyer–Villiger oxidation of the resulting ketone. The key reaction is opening of the appropriately functionalized bicyclic lactone. The reduction of lactone 4 with LAH furnished the triol 5 in 85% yield. The 1,3-diol moiety was converted to the acetonide and the primary hydroxyl group was tosylated with TsCl in the presence of NEt₃ in DCM to afford the tosylate 6 in 95% yield. The –CH₂OTs group of 6 was transformed into a methyl group by LAH in refluxing THF, followed by acetonide deprotection to give the diol 7 in 88% yield. Selective oxidation of the primary hydroxyl group using IBX afforded the

Keywords: Prelactone B; Bicyclic precursor; *Streptomyces griseus*; Bafilomycin.

[☆]IICT Communication No: 040426.

^{*} Corresponding author. Tel.: +91-40-27193434; fax: +91-40-27160512; e-mail: yadavpub@iict.res.in

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.121

Scheme 1. Reagents and conditions: (a) (-)-Ipc₂BH, -23 °C, THF, 24h, then 3N NaOH, 30% H₂O₂, rt, 6h, 95%. (b) PCC, DCM, rt, 3h, 94%. (c) *m*-CPBA, NaHCO₃, DCM, rt, 10h, 88%. (d) LAH, THF, 0°C–rt, 4h, 85%. (e) 2,2-DMP, CSA, acetone, 3h, 73%. (f) TsCl, NEt₃, DMAP, DCM, 95%. (g) LAH, THF, reflux, 3h, 92%. (h) CSA, MeOH, 2h, rt, 88%. (i) IBX, DMSO, DCM, 0°C–rt, 3h, 83%. (j) NaClO₂, NaH₂PO₄·2H₂O, DMSO, H₂O, 30min. (k) CH₂N₂, Et₂O, 30min, yield 85% from **8**. (l) H₂/Pd(OH)₂, EtOH, rt, 1h, 93%.

aldehyde **8**, which was characterized by the presence of an aldehyde proton at δ 9.80 in the ¹H NMR spectrum. The aldehyde was converted into its methyl ester **10** by oxidation using NaClO₂, NaH₂PO₄·2H₂O in DMSO followed by in situ esterification of the resulting acid using diazomethane. Finally, hydrogenation using H₂ on Pd(OH)₂ in EtOH at rt resulted in smooth removal of the Bn protecting group and concomitant lactonization afforded (+)-prelactone B **1** as a crystalline solid (mp 97–98 °C, lit.^{8c} mp 97–98 °C). The synthetic substance exhibited spectral properties¹³ (¹H, ¹³C NMR, IR, mass) and specific rotation, $[\alpha]_D^{25}$ +38.7 (*c* = 0.75, MeOH) {lit.^{8c} $[\alpha]_D^{25}$ +39.1 (*c* 0.6, MeOH)}, in accord with those reported (Scheme 1).

In conclusion, we have achieved a short and highly efficient asymmetric synthesis of (+)-prelactone B in 24% overall yield. Efforts towards the total synthesis of bafilomycin A_1 are in progress and the results will be published in due course.

Acknowledgements

K.B.R. thanks UGC, New Delhi for the award of a fellowship.

References and notes

- (a) Cortes, J.; Wiesman, K. E. H.; Roberts, G. A.; Brown, M. J. B.; Staunton, J.; Leadlay, P. F. *Science* **1995**, *268*, 1487; (b) Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. **1994**, *116*, 11612; (c) Gerlitz, M.; Hammann, P.; Thiericker, R.; Rohr, J. J. Org. Chem. **1992**, *57*, 4030.
- 2. Endo, J. A. J. Med. Chem. 1985, 28, 401.
- 3. Honda, T. J. Chem. Soc., Perkin Trans. 1 1990, 1733.
- Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett. 1996, 18, 1969.
- 5. Cavil, G. W. K.; Clark, D. V.; Whitefield, F. B. Aust. J. Chem. 1968, 21, 2819.
- 6. Laurence, B. R. J. Chem. Soc., Chem. Commun. 1982, 59.
- 7. Bindseil, K. V.; Zeeck, A. Helv. Chim. Acta 1993, 76, 150.
- (a) Hanefeld, U.; Hooper, A. M.; Staunton, J. Synthesis 1999, 401; (b) Chakraborty, T. K.; Tapadar, S. Tetrahedron Lett. 2003, 44, 2541; (c) Dias, L. C.; Steil, L. J.; Vasconcelos, V. de A. Tetrahedron: Asymmetry 2004, 15, 147; (d) Csãk, A. G.; Mba, M.; Plumet, J. Synlett 2003, 2092.
- 9. Fournier, L.; Gaudel-sin, A.; Kocienski, P. J.; Pons, J.-M. Synlett 2003, 107.
- Toshima, K.; Yamaguchi, H.; Jyojima, T.; Noguchi, Y.; Nakata, M.; Matsumura, M. *Tetrahedron Lett.* **1996**, *37*, 1073, and references cited therein.
- Yadav, J. S.; Rao, C. S.; Chandrashekar, S.; Ramarao, A. V. *Tetrahedron Lett.* **1995**, *36*, 7717.
- (a) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. *Tetrahedron Lett.* 2001, 42, 4713; (b) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. *Tetrahedron Lett.* 2002, 43, 3453.
- 13. Selected physical data for 1. $R_{\rm f}$ =0.45 (silica, 60% EtOAc in petroleum ether); [a]_D²⁵ +38.7 (*c*=0.75, MeOH); mp 97– 98 °C; IR (KBr) $\nu_{\rm max}$ 3475, 2969, 2925, 1718, 1465, 1274, 1004 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 3.72 (m, 2H), 2.89 (dd, *J*=17.6, 5.9 Hz, 1H), 2.52 (br s, OH), 2.48 (dd, *J*=17.8, 8.0 Hz, 1H), 1.98 (m, 1H), 1.76 (ddq, *J*=10.0, 7.0, 6.1 Hz, 1H), 1.12 (d, *J*=6.5 Hz, 3H), 1.08 (d, *J*=6.0 Hz, 3H), 0.92 (d, *J*=6.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.33, 86.38, 69.65, 38.96, 38.89, 28.89, 19.94, 14.04, 13.60; MS (EI): *m/z* 173 (M+H).